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ABSTRACT 
There exist various Software Reliability Growth 
models(SRGMs) in literature but they rarely differentiate 
between the failure observation and fault removal process. In 
real software development environment, the number of failures 
observed need not be same as the number of faults removed.  
As the testing grows and testing team gains experience, 
additional number of faults are removed without their causing 
any failure resulting in lesser failure observation than the fault 
removal. If the number of failures observed is more than the 
number of faults removed then we have the case of imperfect 
debugging. Due  to the complexity of the software system and 
the incomplete understanding of the software, the testing team 
may not be able to remove the fault perfectly on the detection of 
the failure and the original fault may remain or get replaced by 
another fault. While the former phenomenon is known as 
imperfect fault debugging, the latter is called fault generation. 
In case of imperfect fault debugging the fault content of the 
software  remains same while  in case of fault generation the 
fault content increases as the testing progresses and removal 
results in introduction of new faults while removing old ones. 
Attempts have been made to study the above cases separately. 
Most of the SRGMs are based upon constant or monotonically 
increasing Fault Detection Rate (FDR). In practice, as the 
testing grows, so does the skill and efficiency of the testers. 
With the introduction of new testing strategies and new test 
cases, there comes a change in FDR. The time point where the 
change in removal curve appears is termed as ‘change point’. 
In this paper we incorporate the concept of change point in 
Software Reliability Growth in the presence of imperfect 
debugging and fault generation. The model has been validated, 
evaluated and compared with other existing non homogenous 
poisson process(NHPP) models by applying it on actual failure 
/ fault removal data sets cited from real software development 
projects. The results show that the proposed model provides 
improved goodness of fit and predictive validity for software 
failure / fault removal data. 
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1.INTRODUCTION 
It is virtually impossible to conduct many day-to-day activities 
without the aid of computer systems controlled by software. As 
more reliance is placed on these software systems to operate in 
a reliable manner, the failure to do so can result in high 
property, monetary or human loss.  So, there is a need for 
effective and well planned testing. Testing is an important part 
of the software development process.  

 
Several SRGMs have been developed in the literature to 
estimate the fault content and fault removal rate per fault in 
software. Goel and Okumoto [6] have proposed NHPP based 
SRGM assuming that the failure intensity is proportional to the 
number of faults remaining in the software describing an  
exponential failure curve. Ohba [13] refined the Goel-Okumoto 
model by assuming that the fault detection / removal rate 
increases with time and that there are two types of faults in the 
software. SRGM proposed by Bittanti et al. [1] and Kapur and 
Garg [10] have similar forms as that of Ohba [13] but are 
developed under different set of assumptions. These models 
can describe both exponential and S-shaped growth curves and 
therefore are termed as flexible models. 

 
In most of the models discussed above it is assumed that 
whenever an attempt is made to remove a fault it is removed 
with certainty i.e. a case of perfect debugging. In practical 
software development scenario, the number of failure observed 
can be less than or more than the number of error removed.  
Kapur and Garg [10] has discussed the first case in their Error 
removal phenomenon flexible model which shows as the 
testing grows and testing team gain experience, additional 
number of faults are removed without them causing any failure. 
But if the number of failure observed is more than the number 
of error removed then we are having the case of imperfect 
debugging.  

 
The testing team may not be able to remove the fault perfectly 
on the detection of the failure and the original fault may remain 
or replaced by another fault because of the incomplete 
understanding of the internal structure of the software. While 
the first phenomenon is known as imperfect debugging, the 
second is called fault generation. In case of imperfect 
debugging the fault content of the software is not changed, but 

   



Proceedings of the National Conference; INDIACom-2007 
 

because of incomplete understanding of the software the 
detected fault is not removed completely. But in case of error 
generation the fault content increases as the testing progresses 
and removal results in introduction of new faults while 
removing old ones.  
 
It was  Goel [5] who first introduced the concept of imperfect 
debugging. He introduced the probability of imperfect 
debugging in Jelinski and Moranda [7]. Model due to Chou and 
Obha [14] is a fault generation model as applied on GO model 
and has been also named as Imperfect debugging model.  
Kapur and Garg [11] introduced the imperfect debugging in 
Goel and Okumoto [6]. Recently, Pham et. al.[19] proposed a 
testing efficiency model which includes both imperfect 
debugging and fault generation, modeling it on the number of 
failures experienced or observed, but both imperfect debugging 
and fault generation is actually seen during fault removal. 
Recently, Kapur et. al.[9] proposed a flexible  SRGM with 
imperfect debugging and fault generation using a logistic 
function for fault detection rate which reflects the efficiency of 
the testing team.  

Most of the SRGMs developed till yet  are based upon constant 
or monotonically increasing Fault Detection Rate (FDR). As 
the testing progresses, the testing team gains experience and 
with the employment of new tools and techniques, the fault 
detection rate gets changed. This change can also be caused by 
shift in testing strategy, defect density, introduction of new test 
cases, and induction of skilled personnel in team or simply by 
the increase in efficiency of present team. The point of time 
where the change in FDR is observed can be termed as 
‘Change Point’. Very few attempts have been made to 
incorporate the ‘Change point’ in failure growth phenomenon. 
The work in this area started with Zhao [20] who introduced 
the change point analysis in Hardware and Software reliability. 
Some pioneering work has been done in the area by Shyur [17], 
Chang [4], Wang [18]. The position of the change point can be 
judged from the graph of the actual failure data. 

In this paper, a flexible  SRGM incorporating change point in 
fault generation and imperfect debugging with learning has 
been proposed. The proposed model has been validated and 
evaluated on two actual software failure / fault removal data 
sets and compared with other existing models under perfect and 
imperfect environment. For estimation of  parameters of the 
proposed model, SPSS is used. SPSS is a Statistical package 
for Social Sciences.  

The paper is organized as follows: Section 2 describes the Non 
Homogenous Poisson Process and the assumptions for the 
proposed model. Section 3 discusses the model development 
under imperfect debugging and fault generation incorporating 
the concept of  change point.  Sections 4 and 5 provide the 
method used for parameter estimation and the criteria used for 
validation and evaluation of the developed model respectively. 
Section 6 gives the estimated results of the developed model to 

actual software reliability data sets collected from real software 
development projects. Section 7 concludes the paper. 

Notation 
m(t) : the mean value function or the expected 

number of faults detected by time t 
a : constant, representing the initial number of 

faults lying dormant in the software when the 
testing starts.   

a(t) : total fault content of the software dependent 
on the time.  

λ(t) : intensity function or fault detection rate per 
unit time 

b1,b2,c  : constants 
p : the probability of fault removal on a failure 

(i.e., the probability of perfect debugging).  
α1, α2 : the rate at which the faults may be introduced 

during the debugging process per detected fault 
before and after change point. 

β  : a constant parameter in the logistic 
function. 

b(p,t)     : rate of fault removal per remaining fault for 
a software under probability of perfect 
debugging p. 

τ   : change point i.e. a change in removal curve 
from where the  FDR change. 

2. Basic Assumption 
The SRGM presented in this paper is based upon NHPP. The 
NHPP models are based on the assumption that the software 
system is subject to failures at random times caused by 
manifestation of remaining faults in the system. Hence NHPP 
are used to describe the failure phenomenon during the testing 
phase. The counting process { of an NHPP process 
is given as follows. 

}0),( ≥ttN

{ } ( ) ...2,1,0,
!
)()(Pr )( === − ke

k
tmktN tm

k
(1)

and               (2) ∫=
t

dxxtm
0

)()( λ

The intensity function λ(x) (or the mean value function m(t)) is 
the basic building block of all the NHPP models existing in the 
software reliability engineering literature. 

The proposed model is based upon the following basic 
assumptions: 

1. Failure observation / fault removal phenomenon 
is modeled by NHPP. 

2. Software is subject to failures during execution 
caused by faults remaining in the software. 

3. Each time a failure is observed, an immediate 
effort takes place to find the cause of the failure in 
order to remove it. 
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4. Failure rate is equally affected by all the faults 
remaining in the software. 

5. When a software failure occurs, an instantaneous 
repair effort starts and the following may occur: 

  (a) Fault content is reduced by one with 
probability p 

  (b) Fault content remains unchanged with 
probability 1-p. 
6. During the fault removal process, whether the 

fault is removed successfully or not, new faults 
are generated with a constant probability α. 

7. Fault removal rate is assumed to be non-
decreasing inflection S-shaped logistic function to 
describe the learning effect of the fault removal 
team 

Assumption 5 and 6 captures the effect of imperfect debugging 
and error generation respectively, whereas assumption 7 
incorporates the learning of testing team. 
 

3. Modeling Software Reliability 

3.1. Proposed SRGM  
Assuming that fault removal rate per additional fault removed 
is not only a function of time but is a function of both time and 
probability of perfect debugging and a constant proportion of 
removed faults are generated while removal, the differential 
equation describing the removal phenomenon can be given by 
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where τ is the change point. 

Case 1:  For 0 ≤t ≤τ 
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Solving the above differential equation (4) under initial 
condition m r(0)=0 , we get mean value function as  
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Case 2:  For t > τ 
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Solving the above differential equation (6) under initial 
condition at t=τ , m r(t)= m r( ) , we get mean value function 
as  
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Here, ( )
(1 )r

am t
α

=
−

, When t tends to ∞ and 

1α = 2α =α  which implies that if testing is carried out for 

an infinite time more faults are removed as compared to the 
initial fault content because there are some error added to the 
software due to error generation.  

 
4. Parameter Estimation 
The success of mathematical modeling approach to reliability 
evaluation depends heavily upon quality of failure data 
collected. The parameters of the SRGMs are estimated based 
upon these data. The model discussed in this paper is a  non-
linear model and it is difficult to find solution for nonlinear 
models using Least Square method and require numerical 
algorithms to solve it. 

 
Statistical software packages such as SPSS help to overcome 
this problem. SPSS is a statistical package for Social Sciences. 
SPSS Regression Models enables the user to apply more 
sophisticated models to the data using its wide range of 
nonlinear regression models. For the estimation of the 
parameters of the proposed model method of Least Square has 
been used. Non-linear regression is a method of finding a 
nonlinear model of the relationship between the dependent 
variable and a set of independent variables.  
 
5. Model Validation and Comparison Criteria 
5.1. Model Validation 

To assess the performance of the proposed SRGM 
incorporating change point with imperfect debugging and fault 
generation using logistic form of b(t) to indicate  learning of 
the testing team, we have carried out the parameter estimation 
on two real software failure datasets.  

 

Data set 1(DS-1) 

The first data set (DS-1) had been collected during 35 months 
of testing a radar system of size 124 KLOC and 1301 faults 
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were detected during testing. This data is cited from Brooks 
and Motley [2].The position of the change point can be judged 
from the graph of the actual failure data. In DS-1, the change 
point ( ) is taken  to be 25. τ
Data set 2(DS-2) 

The second data set (DS-2) had been collected during 19 weeks 
of testing a real time command and control system and 328 
faults were detected during testing. This data is cited from 
Ohba et. al. [13].The position of the change point can be judged 
from the graph of the actual failure data. In DS-1, the change 
point ( ) is taken  to be  13. τ
5.2. Comparison Criteria for SRGMs 
The performance of SRGMs are judged by their ability to fit 
the past software fault data (goodness of fit) and predicting the 
future behavior of the fault data knowing the past and present 
software fault data (Predictive Validity Criterion). 

  
5.2.1. Goodness of Fit criteria 
The term goodness of fit is used in two different 
contexts. In one context, it denotes the question if a 
sample of data came from a population with a 
specific distribution. In another context, it denotes 
the question of “How good does a mathematical 
model (for example a linear regression model) fit to 
the data”?  
a. The Mean Square Fitting Error (MSE):  
The model under comparison is used to simulate the fault data, 
the difference between the expected values, and the 
observed data yi is measured by MSE  as follows.  

)(ˆ itm
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2))(ˆ(               (8)     

where k is the number of observations. The lower MSE 
indicates less fitting error, thus better goodness of fit[12]. 
b. Coefficient of Multiple Determination (R2):  
We define this coefficient as the ratio of the sum of squares 
resulting from the trend model to that from constant model 
subtracted from 1.  
i.e.  =2R

SScorrected
SS residual- 1 .                 (9) 

R2 measures the percentage of the total variation about the 
mean accounted for the fitted curve. It ranges in value from 0 
to 1. Small values indicate that the model does not fit the data 
well. The larger R2, the better the model explains the variation 
in the data[12].  
c. Bias: 
The difference between the observation and prediction of 
number of failures at any instant of time i is known as 
PEi.(prediction error). The average of PEs is known as bias. 
Lower the value of Bias better is the goodness of fit [15]. 
d. Variation: 

The standard deviation of prediction error  is known as 
variation. 

( ) ( )∑ −−= 2

1
1 BiasPENVariation i

                   (10)

Lower the value of Variation better is the goodness of fit [15]. 
e. Root Mean Square Prediction Error: 
It is a measure of closeness with which a model predicts the 
observation. 

( )22 VariationBiasRMSPE +=                               (11)
Lower the value of Root Mean Square Prediction Error better is 
the goodness of fit [15]. 
f. The Kolmogorov-Smirnov Test 
The Kolmogorov-Smirnov test (K-S test) [3] is a non-
parametric test. It tries to determine if two datasets differ 
significantly. The Kolmogorov-Smirnov (K-S) test is based on 
the empirical distribution function (ECDF). Since it is non-
parametric, it treats individual observations directly and is 
applicable even in the case of very small sample size, which is 
usually the case with SRGM validation. 

 
Given N ordered data points Y1, Y2, ..., YN, the ECDF is defined 
as  

NinEN /)(=                (12) 
where n(i) is the number of points less than Yi and the Yi are 
ordered from smallest to largest value. This is a step function 
that increases by 1/N at the value of each ordered data point.  

The Kolmogorov-Smirnov test statistic is defined as  
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where F is the theoretical cumulative distribution of the 
distribution being tested which must be a continuous 
distribution (i.e., no discrete distributions such as the binomial 
or Poisson), and it must be fully specified (i.e., the location, 
scale, and shape parameters cannot be estimated from the data). 
Lower the value of Kolmogorov-Smirnov test better is the 
goodness of fit. 
5.2.2. Predictive Validity Criterion  
Predictive validity is defined as the ability of the model to 
determine the future failure behavior from present and past 
failure behavior. Suppose  be the testing time,  is number kt kx
of faults detected during the interval , and  is the ]t,0( k )t(m̂ k

estimated value of the mean value function  at , which )t(mr kt
is determined using the actually observed data up to an arbitrary 
testing time )tt0(t kee ≤< , in which  denotes the )t/t( ke

testing progress ratio. In other words, the number of failures by 

kt  can be predicted by the SRGM and then compared with the 

actually observed number . The difference between the kx
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predicted value  and the reported value  measures the )t(m̂ k kx
prediction fault. The ratio  is called ( ){ kkk x/x)t(m̂ − }
Relative Prediction Error (RPE). If the RPE value is negative / 
positive the SRGM is said to underestimate / overestimate the 
future failure phenomenon. A value close to zero for RPE 
indicates more accurate prediction, thus more confidence in the 
model and better predictive validity. The value of RPE is said to 
be acceptable if it is within (10%) (Kapur et al. [12]). ±
 
6. Data Analyses and Model Comparison 
Here we assume that location of change point τ can be judged 
from the data curve and hence need not be estimated. Using 
Non-linear regression technique remaining parameters of 
proposed SRGM(7) are estimated. To judge the predictive 
power and accuracy of the proposed SRGM, we have compared 
the results to the those of existing SRGMs like Ohba-Chou[14], 
P-N-Z[16], Z-T-P[19], two models by Kapur et. al.[9] and used 
MSE and R2 , bias, variation, RMSPE,  Kolmogorov-Smirnov 
test,  predictive validity criterion as the performance measures. 
6.1. For DS-1 
The estimated values of parameters of mean value function 
m(t) given by (7) are worked out. For this purpose, we assume 
that change point τ can be judged from the data and need not be 
estimated. To identify the location of change point, the graph of 
cumulated number of faults is evaluated and wherever a sudden 
change in detection rate is observed, the corresponding time 
point is termed as change point. For DS- 1, the change is 
observed at around  25th value. So here we take τ=25. The 
estimation results are provided in Table-1 while the comparison 
criteria results are shown in Table-2.   

Table-1: Model Parameter Estimation Results 
If we carefully observe the estimation results for DS-1, we 
observe that p=.8535 for proposed SRGM which represents a 
large fraction(85.35%) of the detected faults are removed 
perfectly while only a very small fraction faults remain even 
after being detected. The learning is high with β=25. Here we 
observe that b2 is less than b1. It shows the slow down in 
detection rate after the change point. Here, α1=.001 which is 
very low. Also, α2 is slightly greater than α1 which indicates 
that fault generation is increased a bit after the change point.  

Table-2: Model Comparison Results 
 
From Table-2, we can observe that the proposed SRGM gives 
the best goodness-of-fit when compared to other existing 
models. 
 
DS-1 is truncated into different proportions and used to 
estimate the parameters of the proposed model. For each 
truncation, one  relative value is obtained. It is observed that 
the predictive validity of the model varies from one truncation 
to another  and provides better predictive power to forecast the 
future fault behavior of the software data. The RPE estimation 
results are shown in Table-3 for proposed SRGM. For DS-1, 
we observe that even 75 % of data is sufficient to predict the 
future failure behavior well with RPE as low as  1.628% for 
proposed SRGM. 
 
 
 
 
 
 
 
  

Table-3: RPE Estimation Results 

The fitting of the proposed model with change point to DS-1 is 
graphically illustrated in Figure 1. It clearly shows that the 
model fits the data excellently. Figure 2 illustrate graphically 
the retrodictive and predictive ability of the proposed model. In 
each case the DS-1 is truncated at (75% approx.) to estimate 
the model parameters. The model is then used to estimate the 
whole DS. The points below  (marked by the intersection of 
the horizontal line with the curve) demonstrate the retrodictive 
ability while the points above  demonstrate the predictive 
ability of the model. 

et
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Parameter Estimation Models 
under 
Compariso
ns 

a b1 b2 
1α  2α

 

β  p c 

Obha-Chou 
Model 

7889 .006 - .230 - - - - 

P-N-Z 
Model 

1305 .198 - .001 - 19 - - 

Z-T-P 
Model 

1519 .003  .137 - .57 .41 .0002 

Kapur et. al. 
Model 1 

1331 .201    - .001 - 20  .99 - 

Kapur et. al. 

Model 2 

1330 .234   - .001    - 20   .86   - 

Proposed 
SRGM  

1319 .2499 .2 .001 .00
25 

25 .85
35 

- 

Comparison Criteria Models 
under 
Comparis
ons 
 

MSE BIAS VARIAT
ION R  

2 RMS
PE 

K-S 
statis

tic 

Obha-
Chou 
Model 

8924 18.58 93.974 .95810 95.79 .995 

P-N-Z 
Model 

236 -0.57 15.571 .99889 15.58 .484 

Z-T-P 
Model 

7760 16.96 87.704 .96356 89.33 .991 

Kapur et. 
al. Model 
1 

206 -2.148 14.407 .99896 14.57 .453 

Kapur et. 
al. Model 
2 

204 -2.148 14.327 .99904 14.49 .452 

Proposed 
SRGM  

150 -0.006 12.419 .99930 12.42 .426 

Model (te/tk) m(tk) RPE RPE(%) 

100% 1301.68 0.00052 0.052 
95% 1311.32 0.00793 0.793 
90% 1306.83 0.00448 0.448 
85% 1305.06 0.00311 0.311 
80% 1313.09 0.00929 0.929 

 
 

Proposed 
Model  

75% 1322.18 0.01628 1.628 
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Goodness of Fit for DS-1 (1301 faults)  for Proposed SRGM 
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  Figure 1: Goodness-of-Fit curve 
Retrodictive and Predictive ability for DS-1 for Proposed SRGM 
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 Figure 2: Retrodictive and Predictive ability 
 
6.2. For DS-2 
For DS-2, the change is observed at around  13th value. So here 
we take τ=13. The estimation results are provided in Table-4 
while the comparison criteria results are shown in Table-5. 

Table-4: Model Parameter Estimation Results 
 

If we carefully observe the estimation results for DS-2, we 
observe that p = .999 for proposed SRGM which represents a 
large fraction(99%) of the detected faults are removed perfectly 
while only a very small fraction faults remain even after being 
detected. The learning is quite fine with β=3.73. Here we 
observe that  b2 is less than b1 in the proposed SRGM. It shows 
the slow down in detection rate after the change point. Here, 
α1=.0001 which is very low. Also, α2 is more than α1 in case 
of proposed SRGM which indicates that fault generation is 
increased after the change point. 

Table-5: Model Comparison Results 
The RPE estimation results are shown in Table-6 for proposed. 
For DS-2, we observe that even 85 % of data is sufficient to 
predict the future failure behavior well with RPE as low 
9.737% for proposed SRGM. 
 
 
 
 
 
 
 

Table-6: RPE Estimation Results 

The fitting of the proposed model with change point to DS-2 is 
graphically illustrated in Figure 3. Figure 4 illustrate 

graphically the retrodictive and predictive ability of the 
proposed model. It clearly shows that the model fits the data 

excellently. 
Goodness of Fit for DS-2 (328 faults)  for Proposed SRGM 

0

200

400

1 4 7 10 13 16 19 22 25 28 31 34
       Time period

C
um

ul
at

iv
e 

 F
au

lts

estimated
values
actual Values

 Figure 3: Goodness-of-Fit curve 

R e tro d ic tiv e  a n d  P re d ic tiv e  a b il ity  fo r  D S -2  fo r  
P ro p o s e d  S R G M  2

0

1 0 0

2 0 0

3 0 0

4 0 0

1 3 5 7 9 11 13 15 17 19

T im e  P e r io d  

C
um

ul
at

iv
e 

fa
ul

ts

A c tu a l V a lu es

E s t im a te d  V a lu es

 Figure 4: Retrodictive and Predictive ability 
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Parameter Estimation Models 
under 
Comparison
s 

a b1 b
2 1α  2α

 

β  p c 

Obha-Chou 
Model 

668 .04 - .122 - - - - 

P-N-Z Model 305 .21     .013    - 2.78   - - 
Z-T-P Model 402 .003 - .081 - .515   .8 .0004 
Kapur et. al. 
Model 1 

386 .186    - .001 - 2.65  .9 - 

Kapur et. al. 
Model 2 

382 .201   - .001   - 2.88   .8  - 

Proposed 
SRGM  

358 .211 .2 .000
1 

.058   3.73   .9
9 

- 

Comparison Criteria Models 
under 
Comparis
ons 

MSE BIA
S 

VARIAT
ION 

R2 RMSP
E 

K-S 
statis
tic 

Obha-
Chou 
Model 

90.85 -1.03 9.735 .98645 9.79 .998 

P-N-Z 
Model 

139.83 1.16 12.090 .99120 12.1457 .969 

Z-T-P 
Model 

116.65 0.43 11.088 .98870 11.096 .994 

Kapur et. 
al. Model 
1 

83.84 -0.51 9.393 .99188 9.4065 .866 

Kapur et. 
al. Model 
2 

82.70 -0.52 9.328 .99199 9.3423 .864 

Proposed 
SRGM  

77.60 0.06 9.050 .99248 9.0507 .862 

Model (te/tk) m(tk) RPE RPE(%) 
100% 337.08 0.02768 2.768 

95% 339.69 0.03564 3.564 
90% 347.038 0.05804 5.804 
85% 359.94 0.09737 9.737 
80% 390.55 0.19071 19.071 

 
 

Proposed 
Model 

75% 407.06 0.24102 24.102 
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From Figures 1, 2, 3 and 4, it can be observed that the proposed 
SRGMs not only fits the past well but also predicts the future 
reasonably well.   

7.    Conclusion 
In this paper,  new  SRGMs with two types of imperfect 
debugging has been presented. The first type, less damaging, is 
the case of imperfect debugging where all detected errors are 
not removed completely resulting in the same fault content of 
the software. The second type, known as error generation, 
describes the situation when each error removal attempt 
increases the fault content of the software. The concept of 
learning has been incorporated in the FDR to show the gain in 
experience of the testing team as the testing grows. As the 
testing progresses, the testing team gains experience and with 
the employment of new tools and techniques, the fault 
detection rate gets changed. Hence, the concept of change point 
has been introduced. In a nut shell, SRGMs incorporating 
change point with imperfect debugging and fault generation 
using learning function for FDR have been developed. The 
results show that the proposed models provides improved 
goodness of fit and predictive validity for software failure 
occurrence / fault removal data due to their  applicability and 
flexibility. The study of change point is not limited to the area 
of Software Reliability but it can be extended to other 
application-oriented fields like Distributed Software systems, 
Hardware Reliability or Marketing areas.      
 
8. Future Scope 
In this paper, we have used only one type of fault generation 
function and a single change point. If the software being 
developed is big and testing is supposed to continue for 
considerably large interval of time then it is quite possible that 
change in FDR is observed more than once. The frequent 
changes in testing team, test cases or the management can alter 
the overall testing growth resulting in changes in removal rate. 
So, further new SRGMs can be modeled using different fault 
generation functions existing in software development 
literature and introducing multiple change point concept. 
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